outubro 14, 2024

Luz cansada?


A teoria da luz cansada. Fonte vecteezy

    

    Logo após a publicação do artigo de Edwin Hubble em 1929 a respeito da velocidade de recessão (afastamento) das galáxias distantes, Fritz Zwick apresentou uma explicação para o deslocamento para o vermelho, sem considerar a expansão do Universo. O deslocamento ocorreria devido a luz ter percorrido uma grande distância entre a fonte emissora e a detecção na Terra, e devido a este longo deslocamento  teria perdido energia (estas perdas teriam diversas origens) durante o seu trajeto, ou seja a luz estaria "cansada". Portanto, a teoria da luz cansada foi  uma teoria alternativa para  explicar o deslocamento para o vermelho (redshift) observado em galáxias e que não considera a expansão do Universo. Assim, é uma teoria  que propõe um  Universo estático.  [1].

    Esta hipótese seria razoável? Talvez no início, mas com o desenvolvimento dos modelos de expansão do Universo, e suas consequências  um modelo de Universo estático deixava de ser compatível com os dados observacionais. Um resultado importante foi a determinação da nucleosíntese primordial, que descreve a produção dos primeiros núcleos em um Universo em expansão. 

    George Gamow, um dos proponentes da nucleosíntese primordial, escreve  a respeito da teoria da luz cansada em um artigo de revisão de 1949, On Relativistic Cosmology, afirmando que 

No entanto, exceto pela declaração descritiva no sentido de que "quanta de luz pode se cansar viajando por um caminho tão longo", nenhuma explicação razoável para tal avermelhamento foi proposta até agora e, na verdade, dificilmente pode ser esperada com base nas ideias atuais sobre a natureza da luz. Além disso, abolindo a ideia de um universo em expansão, perder-se-ia imediatamente a base sólida para a interpretação de fenômenos evolucionários  na astronomia, e será muito difícil  responder a perguntas como por que os elementos radioativos naturais ainda existem, por que as estrelas não consumiram todo o hidrogênio há uma eternidade, etc. [2]

    Além de não existir nenhum mecanismo minimamente aceitável para explicar o que causaria o "cansaço da luz", como não existe expansão do Universo, a densidade da Radiação Cósmica de Fundo (RCF) não se alteraria, de forma que o seu espectro também seria diferente ao do observado.      A RCF foi descoberta por Arno  Penzias e Robert Wilson (o artigo tem acesso livre), que detectaram a presença de um ruido de fundo em todas as direções do céu, que inicialmente acreditavam ser devido a um problema técnico e não um sinal de origem cósmica. Curiosamente, um outro grupo estava preparando um experimento para detectar a Radiação Cósmica de Fundo, e que foram    contactados por Penzias e Wilson, que reconheceram imediatamente que o sinal detectado por  era o sinal procurado, e o artigo de R.H. Dicke , P.J.E. Peeble, PG. Roll e D.T. Wilkinson , Cosmic Black-Body Radiation foi publicado no mesmo número da revista do artigo de Penzias e Wilson.  Este resultado, conjuntamente com a nucleosíntese primordial, são resultados que descartam o nosso Universo como estático.

    A figura 2 é uma ilustração entre as diferenças entre um modelo com expansão do Universo e um modelo de cosmologia de luz cansada.

Figura 2. A Teoria da luz cansada versus Expansão do Universo fonte [3]


    Existem outros dados observacionais que descartam a teoria da luz cansada. Uma delas é a medida do brilho de galáxias distantes. No modelo de um Universo em expansão, o brilho das galáxias distantes é reduzido a devido diversos fatores,   sendo possível mostrar que o brilho diminui basicamente como (1+z)⁻⁴ e no modelo da luz cansada em um Universo estático a diminuição como (1+z)⁻¹ , sendo z o redshift da galáxia (caso não tenha estudado cosmologia, podemos associar distâncias com o redshift, e quanto maior a distância, maior será o redshift), e observacionalmente os dados são compatíveis com um Universo em expansão.

    A teoria da luz cansada  também não é compatível com dados a respeito de Supernovas, a figura 3 retirado do Time Dilation in Type Ia Supernova Spectra at High Redshift de 2008, mostra  a compatibilidade dos dados com a expansão do Universo, caso o fosse estático não deveria variar o redshift.  

Figura 3.  Ver artigo que é de livre acesso.

    

    Sobre o constante reaparecimento da teoria da luz cansada, o astrofísico Ned Wright comenta [3] "Eu não acredito que seja possível convencer as pessoa que ainda sustentam a ideia da luz cansada (...) diria que é mais um problema para uma revista de psicologia  (...)" . 

    



Notas

[1] F. Zwick não utilizou este termo no seu  artigo de 1929  ON THE RED SHIFT OF SPECTRAL LINES THROUGHINTERSTELLAR SPACE e nem posteriormente, de acordo com o artigo  de Helge Kragh IS THE UNIVERSE EXPANDING? FRITZ ZWICKY AND  EARLY TIRED-LIGHT HYPOTHESES . Para outras teorias de luz cansada, ver por exemplo Wesson, P.S. (1980). The Status of Non-Doppler Redshifts in Astrophysics. In: Gravity, Particles, and Astrophysics. Astrophysics and Space Science Library, vol 79. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-8999-3_11

[2] Trecho original However, except for  the descriptive statement to the effect that "light quanta may get tired traveling such a long way, no  reasonable explanation of such a reddening has as yet been proposed, and, as a matter of fact, can hardly be expected on the basis of present ideas concerning the nature of light. Moreover, abolishing the idea of an expanding .universe, one would immediately lose the sound foundation for the interpretation of evolutionary phenomena in astronomy, and it will be very difficult  to answer such questions as to why the natural radio-active elements are still in existence, why the stars did  not use up all hydrogen an eternity ago, etc.


[3] 'Tired-Light' Hypothesis Gets Re-Tired na seção News of the Week na Science.  Texto original

Even so, researchers doubt whether the results will convert tired-light diehards. “I don't think it's possible to convince people who are holding on to tired light,” says Ned Wright, an astrophysicist at the University of California, Los Angeles. “I would say it is more a problem for a psychological journal than for Science.”

O amigo de Wigner

     
Figura 1. Fonte "Do we really understand quantum mechanics?", F. Laloë. Cambridge Press, 2019.

3    Em 1967 [1], Eugene Wigner apresentou uma questão que hoje denominamos o amigo de Wigner, em uma  disc6ussão sobre o chamado colapso da função de onda . baseado na seguinte reflexão 

Quando o domínio da física foi   para abran57ger fenômenw seos microscópicos, através da criação da mecânica quântica, o conceito de consciência voltou à tona: não era possível formular as leis da mecânica quântica de uma forma totalmente consistente sem referência à consciência." [2]r4

    No texto de 1967, Wigner considerwa um experimento mental semelhante ao do Gato Schrodinger, mas introduzindo uma pessoa no laboratório, moniitorando o experimento "Qual seria a função de onda se meu amigo olhasse para o local onde o flash poderia aparecer no tempo t?" e após uma discussão sobre o processo, conclui " Segue-se que a descrição quântica dos objetos é influenciada pelas impressões que entram na minha consci8ência." [3] 

    A situação apresentada por Wigner é basicamente a seguinte: em um laboratório existe um experimento que produz um flash , e um observador (o amigo de Wigner)  que está monitorando a situação.  O experimento sendo por exemplo um material radioativo que ao decair, aciona um sinal em uma tela, produzindo um flash de luz na tela.  Nesta situação, o amigo de Wigner ao olhar a tela, pode observar ou não um flash de luz. Se observar o flash, saberá que o material radioativo decaiu, se não observar o flash, saberá que o material não decaiu. Isto basicamente é o que realizamos em um laboratório, de forma que não temos nenhum problema.

    No entanto, vamos imaginar agora que o sistema (LA)  Laboratorio + Amigo de Wigner, está sendo observado por alguém de fora , o Wigner.  Neste caso,  o sistema  LA pela mecânica quântica, será descrito por Wigner ( que está  fora do laboratório) após um certo tempo t de maneira semelhante ao do Gato de Schroedinger, isto é como

"atomo não decaiu, não produz flash, amigo não observa o flash" +  "átomo  decaiu, produz flash, amigo observa o flash" 

que é um estado de superposição análogo ao do gato-vivo , gato-morto do experimento mental do Gato de Schroedinger.

    Para o observada7or externo (Wigner), até o momento de abrir de realizar a medida  o estado de superposição é a descrição correta de acordo com a mecânica quântica. Neste caso  realizar a medida seria abrir o laboratório e perguntar ao amigo o resultado que ele obteve. E somente após abrir o laboratório, o resultado será  um dos estados, por exemplo "o amigo viu o flash" , deixando de existir a superposição, isto é, ocorreu o colapso da função de onda. 

2
    Mas se após o final do experimento, Wigner  perguntar  ao amigor "o que você sentiu (a respeito do flash)  ANTES de eu abrir o laboratorio?" a resposta será naturalmente " eu vi (ou não vi) o flash". Isto é, de acordo com o raciocínio de Wigner, implicaria que mesmo antes de ele  (Wigner) "abrir a caixa" a função de onda já teria sofrido o colapso. E compara com a situação na qual se ao invés do amigo, tivéssemos um aparato físico, "como um átomo que pode ou não ser excitado pelo flash de luz" ([1] página 256), não teríamos problemas em assumir que o estado seria descrito por um estado de superposição antes de abrir a caixa (fazer a medida).   Mas a existência de um observador dentro do laboratório,  que segundo a mecânica quântica  implicaria que o amigo estaria "em um estado de animação suspensa" ( segundo E. Wigner   pagina 256 de [1], (...) it implies that may friend was in a state of suspended animation )  seria um absurdo.  Para o amigo, o colapso da função de onda deve ocorrer antes de Wigner abrir o laboratório! 

    Em relação para a questão da consciência citada no início, Wigner argumenta que  "(...)  o ser com consciência deve ter um papel diferente na mecânica quântica do que o dispositivo de medição inanimado: o átomo considerado acima."  e que   "(...)  diferença nos papéis de instrumentos de observação  e observadores com consciência  (...)  é inteiramente convincente, desde que se aceitem os princípios da mecânica quântica ortodoxa em todas as suas consequências" (página 256 e 257 de  [1]).

    Até o momento não existe nenhum experimento que comprove ou não a situação do "amigo de Wigner". Existem  alguns experimentos inspirados na situação, mas  em nenhuma delas o "amigo de Wigner" é um ser consciente.

    A situação conhecido como "o amigo de Wigner" é um exemplo do que ocorre quando levamos ao limite a aplicação da chamada interpretação ortodoxa da mecânica quântica, na qual a função evolui linearmente e de forma determinística  mas quando realizamos uma medida, a evolução deixa de ser  linear, causando o que é denominado colapso da função de onda. 


    Sobre a questão do colapso da função de onda, e a questão de medidas, John Bell [4] questiona se 

"O que exatamente qualifica alguns sistemas físicas para desempenhar o papel de "medidor"? A função de onda do universo estava esperando para saltar por milhares de milhões de anos até que uma criatura viva unicelular aparecesse? Ou  ela teve que esperar um pouco mais, por algum sistema mais qualificado ... com um PhD? Se a teoria for aplicada a  qualquer coisa além de operações de laboratório altamente idealizadas, não somos  obrigados a admitir que processos mais ou menos 'semelhantes a medições' estão acontecendo mais ou menos o tempo todo, mais ou menos em todos os lugares? Não temos saltos o tempo todo?"

    Em teorias como a de Broglie Bohm, ou de muitos mundos de Everett não existem contradições com a situação imaginada por Wigner. Assim, talvez seja um indício de que a mecânica quântica necessita ser modificada em seus aspectos fundamentais. Aqui deixamos claro que a mecânica quântica tem sido testada nas mais diversas situações, e até o momento não existem contradições entre as previsões teóricas e os resultados experimentais. Isto implica que uma futura modificação ( se existir) deve ocorrer para situações limites que ainda não temos condições de realizar experimentos precisos. 



    
Notas


[1] Eugene Wigner, 1995 , "Remarks on the Mind-Body Question", in The Collected  works of Eugene Paul Wigner, parte B, Philosophical Reflections and Syntheses", Springer. Eugene Wigner rececebeu o Nobel de Física em 1963, dividindo com Maria Goeppert Mayer e J, Hans D. Jensen.  

[2] Trecho retirado de  [1], página 248,  "When the province of physical theory was extended to encompass microscopic phenomena, through the creation of  quantum mechanics, the concept of consciousness came to the fore again: it was not possible to formulate the laws of quantum mechanics  in a fully consistent way without reference to the  consciousness."

[3] O trecho completo, retirado de [1], página 252, "It is natural to inquire about the situation if one does not make the  observation oneself but lets someone else carry it out. What is the wave  function if my friend looked at the place where the flash might show  at time t? The answer is that the information available about the object  cannot be described by a wave function. One could attribute a wave  function to the joint system: friend plus object, and this joint system  would have a wave function also after the interaction, that is, after my  friend has looked. I can then enter into interaction with this joint system by asking my friend whether he saw a flash. If his answer gives me the impression that he did, the joint wave function of friend + object  will change into one in which they even have separate wave functions (the total wave function is a ) and the wave function of the object is $f_1$. If he says no, the wave3w fu er enction of the object is $ f_2$ i.e., the object behaves from then on asa et2 if I had observed it and had seen no flash. However, even in this case, in which the observation was carried out by someone else, the typical change in the wave function occurred only when some information (the yes or no of my friend) entered my consciousness. It follows that the qu/antum description of objects is  influenced by impressions entering my consciousness."





[4] John Bell, Against Measurement37s , Physics World, Volume 3, Number 8 Citation John Bell 1990 Phys. 4a 3 (8) 33.