julho 07, 2024

Princípio da Incerteza


    O  princípio da incerteza, é um  princípio fundamental da  moderna física quântica, tendo sido apresentado pela primeira vez por Werner Heisenberg em um artigo  1927 [1],   considerando o que ocorreria ao utilizar um microscópio hipotético utilizando raio gamma para observar um elétron. Sendo o raio gama uma radiação com  menor comprimento de onda do que a da luz, este hipotético  microscópio permitiria determinar com uma precisão  $\delta x $ muito menor a posição do elétron do que seria possível com um microscopio ótico. Utilizando o conceito de fóton, a radiação gamma  ao interagir com o elétron, causa um desvio no mesmo ( este efeito já havia sido estudado mas com raio x por  Arthur Compton) resultando em uma imprecisão no momento linear $\delta p $ devido a imprecisão inicial na posição  do elétron. No artigo Heisenberg demostra que estas imprecisões, utilizando a mecânica quântica resultam na desigualdade [2]

$$\delta x \delta p  \ge \hbar/2 .$$

E destaca que [1]

Assim, quanto maior a precisão na determinação da posição, menor será a precisão na determinação do momento.

Ou dito de forma mais usual, a medida da posição tem como consequência uma perturbação imprevisível e não controlável na medida do momento linear. Da forma apresentada por Heisenberg, temos uma relação entre pertubações devido a realização de medidas no sistema.

Esta é a maneira que o Princípio da Incerteza é apresentado em alguns livros textos muito utilizados  no Brasil, principalmente nas disciplinas iniciais. Por exemplo, a figura 1 é do livro de Física Quântica, de R. Eisberg e R. Resnick, que ilustra exatamente  a abordagem de Heisenberg.

Figura 1. Uma representação da incerteza segundo Heisenberg (Fonte: Fisica Quântica, Eisberg/Resnick)


    No entanto, a equação do Princípio da Incerteza é apresentado nos livros, utilizando uma versão desenvolvida por E.H. Kenard em 1927, generalizando o resultado de Heisenberg,

$$\Delta x \Delta p \ge \hbar/2 $$

Mas qual a diferença entre as duas? Seriam apenas de notação?  Existe uma diferença importante a primeira (a de Heisenberg) expressa as precisão das medidas (uma limitação nas medidas) e a segunda  expressa  o desvio padrão (decorrente das limitações na preparação do estado utilizado nas medidas) [3].  É possível obter a primeira equação a partir da segunda, mas a inversa não é possível.  A equação obtida por Kenard é rigorosamente alicerçada no formalismo da mecânica quântica, a de Heisenberg não é deduzida a partir do formalismo da mecânica quântica. A figura 2, retirado de [3], ilustra a diferença ente o desvio padrão (neste texto $ \Delta q $ é representado por $ \Delta x $) e incerteza na medida. O que denominamos Princípio da Incerteza , é a segunda equação , e não  a primeira. 


Figura 2. Diferença entre o desvio padrão e incerteza na medida. Fonte [3].

    Uma questão que pode surgir é como podemos ter uma incerteza menor que o desvio padrão,   não teríamos problemas com a violação do Princípio da Incerteza? Ou a interpretação  de "incerteza de medida" como desenvolvido por Heisenberg não seria correta?

    Em relação a esta questão,  M. Ozawa [4] apresentou uma dedução    da relação original 

$$\delta x \delta p  \ge \hbar/2 $$

de Heisenberg, mas com um procedimento mais rigoroso, obtendo [5]

$$\delta x \delta p +\Delta x \delta p +\Delta p \delta x     \ge \hbar/2 $$

Uma consequência interessante desta relação é que passa a ser possível realizar medidas precisas na posição, que viola a desigualdade proposta por Heisenberg. E dois artigos  publicados em 2012 [6], utilizando técnicas diferentes,   mostraram a violação da Princípio da Incerteza proposto por Heisenberg,  mas satisfazendo a generalização  proposta por Ozawa.  Estes resultados demonstram que é possível reduzir as incertezas nas medidas SEM violar o Princípio da Incerteza.

Para evitar confusões, o que os experimentos demonstram é a violação da relação [7] , 

$$\delta x \delta p  \ge \hbar/2 $$ 

e não da relação 

$$\Delta x \Delta p  \ge \hbar/2 $$

de forma que o Princípio da Incerteza, que relaciona os desvios padrões continuam válidas. O que os experimentos e o artigo de Ozawa mostram  é que a proposta de que o Princípio da Incerteza limita as precisões das medidas como costuma ser apresentado em alguns livros textos, não é correta. Algo que precisa ser corrigido!

Notas e referências

[1] O artigo  de Heisenberg traduzido para o inglês, está reproduzido no livro Quantum Theory and Measurement, John Archibald Wheeler (Editor), Wojciech Hubert Zurek (Editor), Princeton University Press, 

[2] A equação no artigo de Heisenberg é deduzido considerando um pacote de onda gaussiana, mas aqui estamos considerando um estado genérico. No caso de pacote gaussiano, a incerteza é minima.

[3] Veja por exemplo o artigo de Ballentine, Statistical Intepretations of Quantum Mechanics ou a referência [4].

[4] Ver M. Ozawa,  Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance  in measurement 

[5] No artigo de Ozawa, a dedução é realizada para um par arbitrário de operadores .

[6] Os artigos publicado no PRL Violation of Heisenberg’s Measurement-Disturbance Relationship by Weak Measurements ou com acesso livre aqui e o artigo publicado na Nature  Experimental demonstration of a universally valid error–disturbance uncertainty relation in spin measurements com acesso livre aqui .

[7] Lembrando que as medidas não envolveram posição e momento, mas a ideia é semelhante para os pares de grandezas utilizadas em cada caso. Se você conhece sobre operadores e comutadores, a fórmula geral do Princípio da Incerteza para é dado por

$$ \Delta \hat A \Delta \hat B \ge \frac{1}{2}| \langle  [\hat A, \hat B] \rangle | $$

para dois operadores arbitrários. Note que para operadores que comutam, o limite inferior é zero.

junho 25, 2024

Gravidade sem massa!

    Gravidade sem massa. Esta é uma chamada que encontramos em alguns sites. Mas será possível? O artigo que tem sido citado é The binding of cosmological structures by massless topological defects de R. Lieu, publicado na revista Monthly Notices of Royal Astronomical Society.    

    Antes de responder se é possível ou não, vamos lembrar que é possível ter massa e mesmo assim a força gravitacional em outro corpo ser zero. Isto ocorre quando temos uma casca esférica de massa M, e neste caso na região interna a força de atração gravitacional será zero em qualquer ponto dentro da região esférica. Isto decorre devido  simetria esférica e o fato da força variar com o inverso do quadrado da distância. Então se é possível ter campo gravitacional igual a zero mesmo com massa, será que possível ocorrer  o inverso, isto é , existência de campo gravitacional sem massa? A resposta é NÃO se a massa for sempre positiva. No entanto SE existir massa negativa, é possível um sistema ter massa total NULA.  Mas tendo massa total nula, a força não deveria ser nula? A resposta é: depende da situação. Um exemplo fora da gravitação é o caso de um sistema elétrico com carga total nula. Mesmo nestes casos, podemos ter campo elétrico não nulo, sendo o exemplo usual um sistema de dipolo elétrico. Notemos que apesar da carga TOTAL ser nula, as cargas elétricas existem. No caso das massas, mesmo a massa total sendo nula (devido a existência de massa positiva e massa negativa), as massas ainda existem.

    O que artigo de Lieu propõe é justamente a existência de massa negativa  com   uma distribuição específica,  de forma que quando combinado com a massa positiva,   o campo gravitacional é nulo [1]. Esta distribuição é na forma de cascas esféricas (as conchas) com espessuras infinitesimais, sendo que uma componente descreve uma região de  massa positiva e outra de massa negativa, e PODERIAM ser formados em processos que ocorreram no Universo primordial.  São denominados DEFEITOS TOPOLÓGICOS, que eram um dos candidatos para explicar a formação de galáxias, mas por não serem compatíveis com os dados observacionais, foram desconsiderados, mas aparentemente tem retornado para serem aplicados  em outras situações.

    Mas retornando a questão inicial, SE existir massa negativa, é possível ter campo gravitacional mesmo que a massa TOTAL seja nula.  No entanto não é correto afirmar que não existe massa, seria o mesmo que dizer que no caso de um dipolo elétrico não existem cargas elétricas. Então, dizer que o artigo propõe a existência de campo gravitacional mesmo sem a presença de massa, é uma meia verdade: as massas existem (massa positiva e negativa).  

    A motivação de Lieu para estudar a existências de massas negativas (ou dos defeitos topológicos) é estudar as relações entre as teorias gravitacionais e suas relações com a matéria escura [2], e dentro deste contexto, ele propõe a existências destas conchas formadas com uma combinação de massa positiva e massa negativa, e analisa algumas das suas consequências, em especial aplicando na dinâmica de galáxias e seus aglomerados. Se massas negativas existem ? Não existem indicações sobre a sua existência. No entanto, em ciências as diferentes hipóteses devem ser analisadas, pois mesmo as que não sejam realistas, podem nos fornecer alguns indícios  dos caminhos a serem seguidos ou evitados.

    

 Notas

[1] Para quem possui familiaridade com a delta de Dirac, esta parte do cálculo de Lieu é relativamente simples de ser seguido. Basicamente ele propõe uma combinação de uma componente descrita pela delta de Dirac com uma componente que é proporcional a derivada da delta de Dirac. Esta segunda  componente descrever a parte com massa negativa. A utilização da delta de Dirac impõe que a massa esteja distribuída em cascas esféricas. Estas cascas esféricas resultam em uma força de atração (na concha) que varia com o inverso do raio, o que resulta em curvas de rotação plana, que são observados nas galáxias e para a sua explicação, são utilizadas a existência da matéria escura.

 [2] A escolha entre a existência da matéria escura ou de massa negativa ou qualquer outra alternativa, deve naturalmente estar baseado em dados observacionais e uma robustez teórica. Observacionalmente  ainda não existem dados que permitam abandonar a existência da matéria escura, mas  apesar das observações cosmológicas favorecerem a existência da matéria escura, é uma componente que ainda não foi detectada diretamente, o que justifica a procura  por outras possibilidades.

junho 24, 2024

Luz com massa?

    A luz tem massa? Esta é uma dúvida de muitas pessoas quando escutam que a luz é desviada pela gravidade. Afinal, aprendemos que  "massa atrai massa" de acordo com a gravitação universal. Se não tem massa , como pode ocorrer a atração? E um artigo recente   tem sido divulgado em alguns sites como tendo determinado que a luz tem massa. Seria então esta a explicação correta? A luz tendo massa é atraída pelo campo gravitacional?

    Vamos começar pelo artigo citado, e uma leitura atenta mostra que o artigo não afirma que a luz tem massa, mas estabelece um LIMITE SUPERIOR para a sua massa e não o valor da massa. Notemos que se o experimento tivesse determinado um LIMITE INFERIOR para a massa, seria  um indício que a luz tem massa. Muitos outros experimentos também estabeleceram  estes limites superiores, o que o artigo recente traz é a utilização de dados  obtidos com observação de pulsares (um tipo de estrela) e utilizando uma formulação na qual desde o início é considerado que a luz tem massa (em geral se inicia com massa zero e são acrescentados termos de pertubação).  E aqui é importante ressaltar que medir qualquer grandeza com precisão absoluta não é possível, e quando a própria grandeza tem valor nulo, a situação é mais complicada.  Isto considerando apenas questões de medidas de dados observacionais /experimentais. Se considerarmos o Princípio da Incerteza, é possível mostrar que o limite superior máximo é da ordem de 10⁻⁶⁶ g (ver por exemplo The mass of the photon), de forma que experimentalmente não temos condições de determinar se a massa é zero ou não, sempre existirá uma incerteza no seu valor.  Estimativas para a massa da luz tem sido calculadas por diversos autores, por exemplo, Louis de Broglie em 1940  estimou um limite superior para a massa do fóton em 10⁻⁴⁴ g e Scroedinger em 1945 estimou o valor de 10⁻⁴⁷ g  (citado em Must the Photon Mass be Zero? de Bass e Schroedinger, 1955), de forma que o assunto é estudado faz muitos anos.

    É importante ressaltar que o  artigo NÃO obteve  um valor para a massa da luz, mas estabeleceu um limite superior para o seu valor , caso tenha massa. 

    Mas se a luz não tem massa, como explicar que a força da gravidade atue na luz? Uma explicação muito comum é utilizar a relação da chamada equivalência entre massa e energia, a famosa equação E=mc².  No entanto, uma explicação mais adequada, e talvez mais fundamental é outra. Isto porque mesmo sem a utilização da relação entre massa e energia, podemos determinar a existência de deflexão da luz ao passar perto de um corpo massivo. 

    Consideremos o caso de um objeto com massa m perto de um corpo com massa M, e utilizando as leis de Newton, temos que

        Notemos que a massa m aparece nos dois lados da equação. A princípio o m do lado esquerdo é a massa inercial e o m do lado direito é a massa gravitacional. O fato das massas inercial e gravitacional serem iguais, a aceleração de qualquer objeto é a mesma, independente da sua massa, isto é, a sua massa não importa. Isto implica que mesmo objetos sem massa, são sensíveis ao campo gravitacional. A diferença - no caso da gravitação  newtoniana - é que sendo a massa zero, ela não produz campo gravitacional. Utilizando a equação acima, podemos calcular o desvio da luz na presença de um corpo com massa M (para quem tiver curiosidade, no livro  Curso de Física de Berkeley Volume 1 Mecânica, este cálculo é realizado detalhadamente ). A igualdade entre a massa inercial e a massa gravitacional (ver por exemplo  o texto  Gravitação: gráviton e fóton no CREF) é conhecido como o Princípio Fraco da Equivalência.  Mas voltando ao desvio da luz, o cálculo utilizando a gravitação newtoniana, quando o objeto central é o Sol, nos fornece um valor que é a metade do valor previsto pela Relatividade Geral. Mas o mais importante é que o desvio da luz (independente do seu valor) ocorre devido a igualdade entre a massa inercial e a massa gravitacional, e não devido a equivalência entre a massa e energia. (No caso da Relatividade Geral, a fonte da curvatura do espaço-tempo é uma grandeza que descreve o conteúdo de energia e  massa, de forma que a curvatura pode ser gerada pela presença de uma massa ou de energia, mesmo sem massa).

    E se a luz tiver massa? Quais seriam as consequências? Se luz tiver massa a lei de Coulomb não seria mais "inverso do quadrado da distância" , a polarização da luz seria diferente, seria necessário incluir uma componente longitudinal para a onda eletromagnética e outras consequências (ver por exemplo  este artigo ).

    E a luz tendo massa, possivelmente necessitaremos de uma ou mais novas teorias, mas estas novas teorias necessariamente devem descrever as mesmas observações que são descritas pelas teorias atuais, podendo é claro, prever novas consequências ainda não observadas. Em todo caso, as diferenças entre esta possível nova teoria e as atuais, pelo menos dentro das situações experimentais e observacionais que conhecemos, deverão ser muito pequenas! E com quase toda certeza, para muitas situações continuaremos a utilizar as teorias que atualmente utilizamos Um exemplo é a utilização da mecânica newtoniana mesmo após o advento da teoria da relatividade e da mecânica quântica. O que sabemos hoje é os limites da sua aplicação, e por ser relativamente mais simples em muitas situações, optamos por utilizar a mecânica newtoniana. Possivelmente o mesmo deve ocorrer caso seja detectado uma massa para o fóton. Mas no momento, os indícios são que a sua massa é zero.

 

abril 22, 2024

Câmera Pinhole




    
    Atualmente, com a profusão dos celulares, uma câmera fotográfica é um instrumento bastante comum. Talvez para a maioria dos seus usuários, a câmera de um celular pode parecer bem diferente das câmeras fotográficas mais elaboradas. O que torna estes dois equipamentos similares, é o fato de que as duas registram imagens em um sensor. Mas a câmera de um celular, parece ser muito mais simples do que uma câmera profissional.

    No entanto uma câmera mais simples, consiste de uma cavidade escura com um único buraco na entrada, e no lado oposto ao buraco dentro da cavidade é colocado um aparato na qual é formado uma imagem (invertida). O aparato pode ser um filme, um sensor eletrônico ou uma simples folha translúcida.


    E esta simples câmara possui praticamente todos os elementos de uma câmera mais moderna, sendo que o buraco funciona como a lente. Para entender o funcionamento dela como lente, para uma explicação inicial basta utilizamos a ótica geométrica (que considera os raios de luz como propagando em linha reta, sem considerar o seu comportamento ondulatório).

    Mas como seria uma câmera pinhole? Bem a forma mais simples é pegar uma lata, fazer um furo e pintar a parte interna com tinta preta fosca. Para fazer um buraco pequeno, o melhor é fazer um furo com a ponta de uma agulha em um pedaço de lata de alumínio. (As instruções para construir uma câmera de pinhole, serão postadas em um outro texto, mas é possível encontrar diversos sítios da internet que ensinam como fazer uma destas câmeras, por exemplo em manual do mundo )

    Um objeto ao ser iluminado (por exemplo pelo Sol), reflete essa luz para todas as direções, e alguns destes feixes de luz acabam chegando até a câmera pinhole, entrando pelo pequeno buraco, até atingir o fundo da câmera aonde está o filme (vamos usar o termo filme, mas pode ser qualquer coisa onde a imagem é formada), formando uma imagem invertida do objeto. A próxima figura, ilustra este processo (figura de domínio público, disponível em https://commons.wikimedia.org/wiki/File:Pinhole-camera.png ), onde está representado apenas dois raios de luz, uma saindo do topo da árvore e outro da sua base.

Figura 1. A camêra pinhole. Fonte wikipedia, licença Creative Commons



    Por que necessitamos de um buraco pequeno? Se pensarmos em uma janela de um quarto, não conseguimos perceber nenhuma imagem na parede oposta. A razão são duas: muita luz e o tamanho da janela. Mas mesmo que todo o quarto fosse escuro, não veríamos uma imagem projetada na parede. Uma possibilidade seria a de usar um quarto com persianas bem opaca, com um pequeno buraco (se for fazer isso em casa, não esqueça que está estragando a persiana). Neste caso, seria possível ver a imagem projetada na parede. Então o tamanho do buraco é importante para que possamos ver a imagem projetada.

    Na figura 2 a seguir, ilustramos a influência do buraco na formação da imagem. No caso de um buraco grande (imagem (a), na esquerda) , os raios de luz que saem da parte superior, atingem o fundo formando uma região grande, o que torna a imagem bem borrada. Ao reduzirmos o tamanho do buraco (ver a imagem (b), na direita ),  atingem o fundo formando uma região pequena. Então pela ótica geométrica, quanto menor o buraco, melhor seria o resultado da imagem obtida.

Figura 2. Efeito do tamanho do buraco na imagem projetada.



    Notemos que se afastarmos o plano onde a imagem é formada (figura 3, o plano B está mais afastado do que o plano A ) a imagem pode ficar novamente indistinguível. 

Figura 3. Efeito de deslocar o plano da imagem.

 A figura 3 nos ajuda a  entender o que significa "pequeno buraco". O diâmetro deve ser pequeno em relação à distância entre o furo e a superfície na qual a imagem será projetada.

 
    A figura 4,  do artigo  de Fernando Lang e Ronaldo Axt , que trata da formação de imagens em um espelho plano, é uma ilustração de como os raios provenientes de duas regiões distintas,  formam a imagem, que é invertida.

Figura 4. Formação da imagem que passa pelo furo. Fonte Fernando Lang e Ronaldo Axt


    Na hipótese de termos um buraco muito grande, as duas regiões ficariam superpostas, e não teríamos uma imagem bem definida.

    Com a construção  das figura 3 e 4,  podemos imaginar que de acordo com a ótica geométrica, quanto maior a distância entre o furo e o plano aonde é formado a imagem, menor deve ser o buraco. E portanto, reduzindo o seu tamanho obteríamos imagens melhores.

    No entanto isto não é correto. Ao diminuirmos o tamanho do buraco, existe um limite mínimo aceitável para a formação da imagem. A partir de um certo diâmetro do buraco, os efeitos de difração da luz (um efeito devido ao comportamento ondulatório da luz) passam a ser importante e precisamos considerar a luz utilizando a ótica física, não a ótica geométrica.

    Assim, do ponto de vista da ótica geométrica, quanto menor o buraco, melhor a imagem obtida, mas pelo ponto de vista da ótica física, quando menor o buraco , pior fica a imagem (De uma maneira simples, se o diâmetro do buraco for muito maior que o comprimento de onda da luz, os efeitos da difração ficam desprezíveis, apenas a partir de um certo diâmetro o efeito da difração passam a ser importante). Estes dois efeitos devem ser levados em consideração no desenho de uma câmera de pinhole. (O comportamento específico da cada um dos efeitos não são semelhantes, para maiores detalhes, ver o artigo M.Young 1989.)  

Figura 5. Retirado de M. Young, 1989

    A figura 5, retirado do artigo de Young,  mostra o raio da imagem formada em função do raio do buraco de agulha. A reta representa a condição da ótica geométrica e a hipérbole a condição da ótica física (considerando a luz como uma onda). A região ideal é na intersecção das duas curvas.

    Para um projeto completo de uma câmera pinhole, é necessário conhecer também o tamanho da imagem a ser produzida, a distância do furo até o plano da imagem , e naturalmente o diâmetro do furo. Com estas informações, podemos calcular o que chamamos de f-stop da pinhole. Normalmente o f-stop é bem elevado, sendo comum valores próximos de 200 ou maiores. Para quem não sabe o que é f-stop, em um texto futuro, vamos escrever com mais detalhes sobre o que é o f-stop e seus efeitos para a fotografia. Mas basicamente está relacionado com a quantidade de luz que atinge o sensor, quanto maior o número, menor a quantidade de luz. Em câmeras comuns, dependendo da lente utilizada este valor pode variar de 1.2 (ditas lentes claras ou lentes rápidas) até cerca de 22. No momento o que nos interessa é que com uma câmera pinhole, entra muita pouca luz comparativamente a uma câmera comum. Por outro lado, temos uma grande profundidade de foco. Isto significa que tudo que for fotografado com uma câmera pinhole, estará em foco. No entanto, a imagem de uma pinhole possui uma resolução muito menor que uma câmera comum com lente (tipicamente uma pinhole tem uma resolução de algumas linhas por mm, enquanto uma câmera comum tem uma resolução de algumas dezenas de linhas por mm, ver M. Young 1989), de forma que a imagem vai se assemelhar com as obtidas usando as lentes ditas "soft focus".

    E como fica uma imagem de uma câmera pinhole? A próxima imagem é um exemplo de imagem possível. A distorção ocorre devido ao formato curvo do local onde o filme foi colocado. A imagem original é em negativo, e a imagem da figura 6 já é invertida, isto é, transformada em imagem positiva.

Figura 6. Exemplo de imagem obtida com câmera pinhole.

    O efeito da superfície na qual o filme é colocado, pode ser percebido, comparando com uma imagem obtida com uma câmera com fundo plano, que apresentamos na figura 7.
Figura 7. Exemplo de imagem com o filme em uma superfície plana.


    
    Para quem tiver interesse em construir uma câmera pinhole, um sitio interessante para dar uma olhada no site  https://www.mrpinhole.com/calcpinh.php , onde é possível obter informações sobre o tamanho do buraco ideal para a sua câmera pinhole.

Referências




M. Young, The pinhole camera,Physics Teacher, 27: 648–655, 1989




abril 11, 2024

A Teoria das Ondas Piloto na Mecânica Quântica

Ondas Piloto e a Dupla Fenda Fonte

   

     A moderna mecânica quântica tem início em 1925, com a publicação do trabalho de W. Heisenberg e um ano depois, Erwin Schroedinger pública o artigo apresentando a equação  de onda. E neste mesmo ano ocorre o Congresso de Solvay, que começa a  estabelecer  o que denominamos a interpretação ortodoxa da Mecânica Quântica (que é tradicionalmente ensinado nos cursos de graduação em física).

     A dualidade onda-partícula, é um dos conceitos mais importantes dentro da abordagem  da mecânica quântica. Esta dualidade estabelece que um objeto dependendo da medida pode se comportar como onda OU como uma partícula, um exemplo tradicionalmente apresentado é o da fenda dupla, no qual observamos um padrão de interferência característico de ondas, mas se determinarmos por qual fenda ocorreu a passagem, o obtermos um resultado com características de partículas. 

    No entanto, alguns anos antes, Louis De Broglie publica uma série de artigos [1], e apresenta a chamada Teoria de Ondas Pilotos. Nestes trabalhos Louis De Broglie, defende a igualdade entre  Princípio de Maupertius e o Princípio de Fermat [2].  Nos trabalhos de Louis De Broglie, existem a onda a partícula. A onda funcionando como um guia ( onda guia) para a partícula. Foi a partir dos trabalhos de Louis De Broglie, que Schroedinger obteve a sua equação, mas retirou o conceito de partícula, mantendo apenas o conceito de onda.

    Após 1926 [3], a ideia da Teoria de Ondas Pilotos, praticamente foi esquecida. Somente seria retomada em 1952, com a publicação de um artigo por David Bom. Por este motivo, hoje falamos da Mecânica Bohmniana ou Teoria de Bohm [4].

    Mas o que é a Teoria das Ondas Pilotos?

    Na Teoria das Ondas Piloto, a função de onda  é descrita pela equação de Schroedinger, a mesma que é ensinada nos cursos de graduação. A diferença é que agora existe também a partícula, sendo que o movimento da partícula não é descrito pela Equação de Schrodinger, mas por uma outra equação. que relaciona a velocidade da partícula com a função de onda, que é  obtida com a solução da equação de Schroedinger, e servem como uma onda guia (onda piloto) para a partícula. Nesta formulação, as partículas possuem posição e momento linear (ou a velocidade) bem definidos, e são consideradas como as "variáveis escondidas " [3] da teoria (não aparecem na função de onda).

    De acordo com a teoria de ondas pilotos, as trajetórias das partículas são reais, mas devido as condições iniciais que são aleatórias, não é possível determinar com precisão qual a sua trajetória real. Com as teoria de ondas piloto, os resultados  obtidos com a mecânica quântica  ortodoxa, podem ser reproduzidos, com a grande vantagem de que não é necessário introduzir o colapso da função de onda, isto é, o chamado problema da medida, deixa de existir. 

    Uma questão interessante é que na Teoria de Ondas Pilotos, uma partícula livre NÃO segue uma trajetória retilínea, isto porque a dinâmica não é a Newtoniana, e de acordo com De Broglie (citado em [1] ): 

    "O quanta de luz [átomo de luz] ... não propaga sempre em uma linha reta ...parece necessário modificar o princípio da inércia"

    Em muitas situações nas quais classicamente (isto é, movimentos descritos pela física newtoniana) temos movimento, na Teoria de Ondas Pilotos, a partícula possui velocidade nula! De forma que fica claro que na proposta das ondas pilotos, estamos trabalhando com uma nova dinâmica (no congresso de Solvay de 1927, o título do trabalho apresentado por Dr Broglie foi "The New Dynamics of quanta" ), de forma que as concepções newtonianas deixam de ser válidas.

    A teoria de ondas piloto ou mecânica bohmniana, é uma das alternativas para a mecânica quântica tradicional. Mas dificilmente faz parte da formação dos profissionais de física. Para os defensores da mecânica bohmniana, existem muitos motivos que justificam a sua utilização, mas fora destes círculos é normalmente ignorada.  Talvez, na véspera de completarmos 100 anos da mecânica quântica,  uma introdução aos conceitos básicos da teoria de ondas pilotos seria uma boa atitude nos cursos de graduação em física. 


 Notas e referências

[1] Sobre os artigos de Louis de Broglie, ver por exemplo G. Bacciagalluppi e A. Valentini, Quantum Theory at Crossroads, com acesso livre nos arxiv. A tese de doutorado de L. De Broglie, traduzido para o inglês pode ser acessado neste link. 

[2] O Princípio de Maupertius, é utilizado para obter a trajetória partículas, e o Princípio de Fermat para obter a  trajetória da luz. De Broglie, faz esta identidade considerando a proposta de Einstein de considerar a luz como uma partícula (o efeito fotoelétrico).

[3] Em 1927, foi realizado o quinto Congresso de Solvay, quando começa a ser estabelecido o que denominamos Interpretação de Copenhaguem da Mecânica Quântica.   Ver [1], que faz um detalhamento do V Congresso Solvay.

[4] Ver por exemplo Rodrigo Siqueira-Batista , Mathias Viana Vicari, José Abdalla Helayël-Neto, David Bohm e a Mecânica Quântica: o Todo e o Indiviso, Revista Brasileira de Ensino de Física, vol. 44, e20220102 (2022), DOI: https://doi.org/10.1590/1806-9126-RBEF-2022-0102 (o acesso é livre)

abril 01, 2024

Descongelando no forno micro-ondas

    

    Quem já utilizou o forno micro ondas para descongelar um alimento, deve ter notado que o processo ocorre com alguns momentos o aparelho ficando ligado e outros momentos ficando desligado. Qual a razão deste liga e desliga? Não seria mais rápido ficar ligado todo tempo?

    Inicialmente é importante saber como um forno micro ondas aquece os alimentos, uma referência é [1], da qual extraímos o trecho "A forma como o micro-ondas aquece os alimentos na realidade é um fenômeno conhecido como aquecimento dielétrico. Uma molécula polar, como a água, quando inserida em um campo elétrico tende a girar de maneira a se alinhar com o campo. Quando o campo elétrico inverte o seu sentido periodicamente, como nas ondas eletromagnéticas produzidas pelo forno, as moléculas giram em sentido alternado em busca de se realinhar com o campo. "

    Como a radiação gerada é absorvida por moléculas de água, ligar o forno micro-ondas sem nenhuma quantidade de água, pode causar danos ao forno, pois a energia fornecida não será absorvida e pode retornar para o circuito interno do equipamento. Então evite ligar o forno micro-ondas sem um pouco de água dentro. E é justamente devido ao comportamento da água que o processo de descongelamento ocorre com o liga e desliga do forno micro-ondas.

    Um fator importante é a  constante dielétrica da água [2] .  No caso da água, o seu valor vai depender de diversos fatores, mas em particular do estado físico da água, sendo que o seu valor no estado de gelo é muito menor que o caso da água no estado líquido. A energia absorvida depende do valor da constante dielétrica, logo, a água no estado líquido absorve muito mais energia do que a água no estado de gelo.  Isto tem muita influência no processo de descongelamento dos alimentos.


    Quando utilizamos o forno micro-ondas, assumindo que toda água esteja na forma de gelo, o forno micro ondas irá aquecer muito lentamente o alimento, quando comparado com o caso do alimento descongelado, e neste caso precisaríamos manter o forno micro ondas ligado por mais tempo, aumentando o consumo de energia. E talvez o fator mais importante é que como o descongelamento não ocorre de forma igual, durante o processo teremos um pouco de água na forma líquida, e o local com água irá absorver mais energia que os locais com gelo. Mantendo o forno micro-ondas ligado, então ao colocarmos um alimento congelado, podemos ter ao final do processo um alimento com algumas partes ainda frias, enquanto algumas partes podem estar quentes e talvez excessivamente cozida. Algo que talvez já tenha experimentado ao  esquentar salgados congelados com o forno micro-ondas, com algumas partes ficando frias e outras quentes.

    Para tornar o processo mais homogêneo, o forno micro-ondas deve ser desligado periodicamente. Algumas partes do alimento, formam uma região com água na forma líquida ( o gelo já  derreteu). Este líquido em contato com outras regiões ainda congeladas, faz com com que outras partes ainda com  gelo comecem a derreter. E este processo ocorre de forma lenta, sem que ocorra um cozimento do alimento, principalmente se o forno micro-ondas estiver desligado. Então na etapa que o forno está desligado, é a água já na forma líquida que ajuda a derreter o gelo. Notemos que neste caso, a temperatura do líquido é reduzida, de forma que quando o forno for novamente ligado, não vai ficar suficientemente quente para começar a cozinhar o alimento.  Repetindo este processo, o degelo ocorre de forma mais uniforme. Em geral, cada fabricante possui etapas pré-programadas para o degelo, a recomendação é que utilize esta programação. 


Notas e Referências

[1] Aquecimento da água no micro-ondas NÃO se dá por ressonância!  em https://cref.if.ufrgs.br/?contact-pergunta=aquecimento-da-agua-no-micro-ondas-nao-se-da-por-ressonancia

[2] Tecnicamente, depende da  parte imaginária da constante dielétrica. A do gelo é cerca de 4 ordens de grandeza menor que a da água na forma líquida. Este valor depende da temperatura e da frequência da radiação, 

    

março 17, 2024

Gatos na mecânica quântica

    

 Figura 1. O Gato de Cheshire -John Tenniel - domínio público

    O gato mais popular da mecânica quântica é o de Schrodinger, mas existe um outro que apesar de não ser tão popular,  podemos dizer que tem um sorriso mais permanente. É o gato de Cheshire, um dos tantos personagens do livro Alice de Lewis Carroll.

"Bem! Muitas vezes vi um gato sem sorriso”, pensou Alice; “mas um sorriso sem gato! É a coisa mais curiosa que já vi na minha vida!” [1]

    Como seu parente mais famoso, o gato de Cheshire também aparece na mecânica quântica, mas no artigo dos autores Yakir Aharonov, Sandu Popescu, Daniel Rohrlich e  Paul Skrzypczyk,  Quantum Chesire Cats  de 2012. A ideia de forma geral seria de que na mecânica quântica uma propriedade de um objeto pode ser separado do mesmo e ter existência independente do objeto.  O Gato de Cheshire seria um exemplo, ele desaparece mas seu sorriso permanece. 

    No artigo Quantum Cheshire Cats,  os autores escrevem, [2]

Não admira que Alice esteja surpresa. Na vida real, supondo que os gatos realmente sorriam, o sorriso é uma propriedade  do gato – não faz sentido pensar em um sorriso sem gato. E isso vale para quase todos propriedades físicas.

    Os autores apresentam uma proposta de experimento utilizando um interferômetro, no qual um feixe de fótons inicial é separado em duas trajetórias distintas que posteriormente se cruzam. Na figura 2 apresentamos uma representação esquemática do efeito, na qual o fóton entra pelo lado esquerdo (representado com o Gato com Sorriso),  e passa por divisor de feixe, sendo que a polarização do fóton ( sorriso)  segue a trajetória inferior e o  fóton (gato sem o sorriso) segue a trajetória superior, no final os feixes são recombinados  resultando no fóton original (gato com sorriso).


Figura 2. Ilustração artística do efeito do Gato de Cheshire. Fonte

    Este processo depende de um procedimento denominado medida fraca, que é de forma simplificada  uma medida que interfere muito fracamente com o sistema,  não causando o chamado colapso da função de onda [1] e comparam os estados denominados pré-seleção e pós-seleção.

Figura 3. Descrição esquemática do experimento proposto em Quantum Chesire Cats 

    Na figura 3, apresentamos a descrição esquemática proposta em Quantum Chesire Cats , indicando os estado pré-seleção e pós-seleção. Neste experimento um fóton é preparado no estado pré-seleção, sendo  basicamente um estado emaranhado entre os fótons que percorrem o caminho a esquerda e a direita. Destes estados, escolhemos somente aqueles que ativam o detector superior (D1), outros sendo descartados, isto é, realizamos uma escolha posterior do que vamos examinar (por isto o nome pós-seleção).  O experimento é pensado de tal forma que apenas quando o fóton passa pelo lado esquerdo (a trajetória indicado com |L> na  região entre a pré e  a pós-seleção) o detector D1 é ativado. Até este momento temos  um sistema de interferometria sem nenhuma novidade. A diferença é quando realizamos uma  medida fraca -que é  uma medida que não produz o colapso da função de onda - entre os estados de pré e pós-seleção. Neste caso, os autores argumentam que seria possível determinar estatisticamente , por qual lado passou o fóton (quado D1 é ativado) e determinar a polarização do fóton, inserindo um detector no lado |R> . No artigo os autores demonstram que é possível detectar a polarização do fóton no caminho da direita, que NÃO é o caminho seguido pelo fóton (lembrando que apenas os casos no qual o detector D1 é ativado, são analisados). É importante ressaltar que todo processo envolve medidas fracas, sem o colapso da função de onda. 

    No artigo Observation of a quantum Cheshire Cat in a matter-wave interferometer experiment, de 2014,  Denkmayr, T., Geppert, H., Sponar, S. et al. realizaram  o experimento utilizando neutrons ao invés de fótons, e argumentam que conseguiram  demonstrar o efeito do Gato de Cheshire:,ou seja, é possível detectar o spin do neutron no caminho que o neutron não está passando, que é um resultado compatível com a proposta do artigo Quantum Chesire Cats, isto é, a propriedade spin do neutron segue um caminho distinto do caminho do  neutron.

    Existem outros experimentos que indicam a existência do efeito do Gato de Cheshire, o que indicaria mais uma consequência bem contra intuitiva da mecânica quântica, isto é, podemos separar uma propriedade do objeto, a propriedade seguindo uma trajetória e o objeto uma outra trajetória.

    Uma questão importante é de que os resultados das medidas fracas  correspondem a uma média de diversas medidas e não são consequências de medidas em sistemas individuais, o que faz com que alguns físicos considerem que não existe uma separação entre o "gato" e  o seu "sorriso".  No artigo Contextuality, coherences, and quantum Cheshire cats , os autores Jonte R Hance, Ming Ji e Holger F Hofmann, utilizam a teoria da contextualidade  da mecânica quântica (que de maneira simplificada significa que os resultados de uma medida dependem da ordem que é realizada, ou do contexto das  medidas realizadas no sistema [3]), para analisar a existência do Efeito do  Gato de Cheshire. O resultado é que [4]

"...  esclarecemos como o paradoxo quântico do gato de Cheshire deveria ser interpretado – especificamente que o argumento de que a polarização se torna “desincorporada”  (...) em última análise, apenas um sistema contextual.

    Isto implica que ao realizamos medidas de maneiras diferentes, obtemos resultados diferentes e que o Efeito do Gato de Cheshire somente ocorreria em uma situação muito específica de diferentes medidas realizadas no sistema. De forma que não seria um paradoxo real, mas consequência da propriedade de contextualidade da mecânica quântica. 

    Ainda é cedo para afirmar qual é a correta explicação para o Gato de Cheshire na mecânica quântica, mas como no caso do Gato de Schroedinger, este experimento mostra como a análise de efeitos quânticos é bem distinto do que ocorre em situações cotidianas, descritas pela física clássica, e que apesar de ser uma teoria centenária, como excelentes resultados teóricos e experimentais, muita coisa ainda precisa ser estudada. Mas é assim que caminha a ciência.


Notas e Referências



[1] No original “All right,” said the Cat; and this time it vanished quite slowly, beginning with the end of the tail, and ending with the grin, which remained some time after the rest of it had gone.
“Well! I’ve often seen a cat without a grin,” thought Alice; “but a grin without a cat! It’s the most curious thing I ever saw in my life!”,
texto disponível no Projeto Gutemberg

[2] No original, o trecho completo é  "No wonder Alice is surprised. In real life, assuming that cats do indeed grin, the grin is a property of the cat—it makes no sense to think of a grin without a cat. And this goes for almost all physical properties. Polarization is a property of photons; it makes no sense to have polarization without a photon. Yet, as we will show here, in the curious way of quantum mechanics, photon polarization may exist where there is no photon at all. At least this is the story that quantum mechanics tells via measurements on a pre- and post-selected ensemble. "

[3] Para um artigo de revisão sobre contextualidade em mecânica quântica, ver
Kochen-Specker contextuality, Costantino Budroni, Adán Cabello, Otfried Gühne, Matthias Kleinmann, and Jan-Åke Larsson, Rev. Mod. Phys. 94, 045007 – Published 19 December 2022. Com acesso livre no arxiv. Veja também A Pseudo Telepatia Quântica , publicada no Cref ou em  Fisica Sete e Meia .


[4] No artigo, o trecho completo (na conclusão) aparecer como "In this paper, we have clarified how the quantum Cheshire cat paradox should be  interpreted—specifically that the argument that the polarisation becomes ‘disembodied’ results from only considering one specific pairing of the three mutually-incompatible properties in what is ultimately just a  contextual system."