setembro 17, 2024

Lentes Gravitacionais

     

Fonte 1: Registro do efeito das Lentes Gravitacionais, os arcos de luz são imagens distorcidas de galáxias distantes. Fonte: NASA 

    A chamada Lente Gravitacional tem origem no fenômeno da deflexão da luz [1] devido ao campo gravitacional de um corpo (a lente) com massa M. Esta deflexão da luz foi inicialmente prevista com a utilização da Gravitação Newtoniana, e foi calculado pela primeira vez por J. Soldner em 1801.  Isto pode ser uma surpresa para algumas pessoas, pois é comum associar este fenômeno com a Teoria da Relatividade Geral desenvolvida por Albert Einstein em 1917. A primeira observação da deflexão da luz pelo Sol foi realizada durante um eclipse solar em Sobral, no interior do Ceará em 1919, e as observações  confirmaram a existência da deflexão da luz pelo Sol e com um valor compatível com a previsão da Relatividade Geral, descartando o valor obtido com a utilização da Gravitação Newtoniana [2]. 

    Utilizando o efeito da deflexão da luz é possível demonstrar que um objeto massivo funcione como uma lente gravitacional [3]. Isto ocorre porque a presença de um corpo massivo curva o espaço tempo ao seu redor,  de forma que  o caminho que a luz percorre sofre um desvio da linha reta, que seria esperado na ausência da massa. Na figura 2 apresentamos uma representação esquemática de uma Lente Gravitacional, sendo a fonte e a lente pontuais (figura não está em escala).


Figura 2. Representação esquemática de uma lente gravitacional. Fonte Wikipedia

    Uma lente gravitacional pode ser resultado da ação de qualquer objeto com massa, e o ângulo de deflexão ( o ângulo $ \alpha $ na figura 2) aumenta com a massa ($ \alpha  \propto \sqrt{M} $) . E quanto mais próximo do objeto ( a distância b na figura 2), maior o ângulo de deflexão. E a massa não precisa ser pontual, permitindo  que galáxias e seus aglomerados possam atuar como uma lente gravitacional. As imagens formadas dependem da posição (incluindo as distâncias)  da fonte, da distribuição de massa do objeto que atua como uma Lente Gravitacional,  Na figura 3, apresentamos no lado esquerdo uma imagem em forma de anel quase completo (compare com a figura 1) e do lado direito quatro imagem de um mesmo objeto, formando uma cruz.


Figura 3. No lado esquerdo o Anel de Einstein e no lado direito a Cruz de Einstein, que são dois tipos de imagens que podem ser produzidas por lentes gravitacionais. Fonte ESO
    
      

    Este efeito não depende do comprimento de onda, de forma que uma lente gravitacional é acromática, que é diferente do caso de uma lente comum (digamos de vidro) na qual o ângulo de deflexão depende do comprimento de onda. Isto ocorre porque no caso do vidro (figura 4), o meio que é responsável pela deflexão é dispersivo, isto é o índice de refração (consequentemente o ângulo de deflexão) vai depender do comprimento de onda, logo as diferentes cores sofrem desvios diferentes. Mas no caso da lente gravitacional é a curvatura do espaço-tempo que causa a deflexão, e isto não depende do comprimento de onda da luz, que torna o processo acromático [4]. 


   

Figura 4. Aberração cromática em uma lente. Fonte By DrBob at the English-language Wikipedia, CC BY SA3.0, wikipedia 

    Devido ao fato da deflexão da luz não depender do seu comprimento de onda, podemos utilizar o espectro obtido para determinar a distância da fonte até o observador, usando a relação entre o chamado redshift cosmológico e a distância. As imagens produzidas por lentes gravitacionais nos permitem estudar a distribuição de massa (incluindo a matéria escura)  de objetos que atuam como uma Lente Gravitacional, detectar objetos que possuem baixa luminosidade. pois as Lentes Gravitacionais amplificam a luminosidade).  

    Efeitos de Lente Gravitacional com estrelas em nossa Galáxia dificilmente podem ser observadas - em particular nosso Sol não produz efeito de Lente Gravitacional que seja possível de ser detectado na Terra, de forma que o que podemos observar são os efeitos de Lente Gravitacional de objetos fora de nossa Galáxia. Este fato   nos permite utilizar estes efeitos também como uma ferramenta de estudo em Cosmologia; Os efeitos de múltiplas Lentes Gravitacionais, flutuações  no brilho de objetos distantes , observações  de galáxias de baixa luminosidade, distribuição de matéria escura, e outros estudos podem ser realizados com a utilização da Lentes Gravitacionais [5] e estes resultados são excelentes testes observacionais na área de Cosmologia. 

    Sendo acromática,  implica que no estudo de lentes gravitacionais ( excluindo o efeito do meio na qual a luz está propagando) podemos sempre utilizar a ótica geométrica? Isto é, desconsiderar as propriedades ondulatórias da luz? A rigor não podemos. Consideremos dois feixes de luz emitidos de regiões muito próximas da fonte. Este feixe sofre a ação de uma lente gravitacional, sendo posteriormente detectada. Dependendo da situação, estes dois feixes são coerentes, de forma que ao serem observados, a princípio é esperado a presença de difração, que é um efeito devido a característica ondulatória da luz. No entanto as condições necessárias para que estes efeitos  sejam observados são muito restritivos, de forma que na prática a aproximação de ótica geométrica no estudo de lentes gravitacionais é perfeitamente adequada, pois com os equipamentos  existentes estes efeitos difrativos não são atualmente possíveis de serem detectados.  



    

Notas

[1] A deflexão ocorre para todos os comprimentos de  onda, mas é comum utilizar o termo luz no sentido mais genérico de ondas eletromagnéticas, e neste texto vamos seguir este padrão. 

[2] Em relação ao valor previsto pela Gravitação Newtoniana é $  \alpha = 0,87  $ segundos de arco,  que é  a  metade do valor previsto pela Relatividade Geral.  Uma informação interessante é que Einstein em 1911 (portanto antes da elaboração da Relatividade Geral), apresentou uma estimativa para a delflexão da luz semelhante ao obtido com a Gravitação Newtoniana. Sobre a expedição em Sobral, ver  por exemplo   Do Eclipse Solar de 1919 ao Espetáculo das Lentes Gravitacionais  de JAS Lima e RC Santos. 

[3] No livro Gravitational Lenses (1992) , P Schneider, J. Ehlers, E.E. Falco,   os autores citam que a primeira utilização do termo "lente gravitacional" foi devido a O. Lodge em 1919, mas no sentido negativo, isto é de que não existiriam as lentes gravitacionais. Ressaltamos que não devemos simplesmente utilizar os conceitos de uma lente ótica para uma lente gravitacional, uma diferença importante sendo que na lente gravitacional, não existe um ponto focal, que é um dos argumentos utilizado por Lodge "it is not permissible to say that the solar gravitational field acts like a lens, for it has no focal lenght" (o artigo pode ser acessado aqui ). Na Lente Gravitacional ao invés de um ponto focal, possuímos uma linha focal.  


[4]  Isto implica que eventuais efeitos dispersivos que venham a ocorrer estão relacionados com o meio pela qual a luz percorre até atingir o observador, não sendo devido ao fenômeno da Lente Gravitacional.  No caso de fontes extensas como as galáxias, as diferentes regiões podem possuir espectros de emissão distintos, e devido ao fato de ser extenso, estas diferentes partes sofrem desvios distintos pela Lente Gravitacional, mas esta diferença é devido a diferença nos ângulos de incidência ( por exemplo os ângulo $ \theta $ na figura 2) e não devido ao comprimento de onda da radiação.


[5] Para um texto não técnico, ver por exemplo  Gravitational lensing: a unique probe of dark matter and dark energy , que é um texto não técnico de RS. Ellis, publicado em 2010..